1931年,哥德尔(Kurt Godel )有一个发现,影响深远,值得注意。这是因为这个发现推翻了当时占统治地位的、要把全部数学归结为逻辑学、又从逻辑学归结为纯粹的形式化的那种观点;还因为这个发现给形式化规定了一些界限;无疑,这些形式化的界限是可以变动的,或者说是权宜性的,但是在结构建立的某个时候却始终是存在的。的确,他已经证明了一种足够丰富和前后一贯的理论,例如象初等算术,是不能用它本身的手段或某些更“弱”的手段(在这个特殊情况下,是怀特海德(Whitehead)和罗素(Russell)的《数学原理》中的逻辑)来证明它本身是没有矛盾的:仅仅依靠它自己的工具,这个理论就的确会导致一些不能决定真假的命题,因而也就不能达到完备的境地。相反,人们后来发现,在作为出发点的理论内部原来不能实现的这些论证,要是用了更“强”的手段,却可以实现。金琛(Gentzen)用坎托尔的超穷算术在初等算术上做到了这点。但是,坎托尔的超穷算术也无法完成它自己的体系;为了做到这一点,就得求助于更高一级型式的理论。
事实上,结构作为转换体系的观念,因此就与连续形成的构造论(constructivisme)一致了。然而,事情发展到这种样子的理由归根结蒂是相当简单的,而且意义是相当普遍的。我们已经从哥德尔的研究结果中引出了若干关于形式化的限度的重要看法,并己能证明除了存在形式化的等级之外,还存在着不同程度地半形式化半直觉性的或相近的知识的不同等级,可以说,它们也在等着实现形式化哩。因而形式化的界限是可变动的、或权宜性的,而不是象标志王国的疆界的一个城墙那样,一旦封闭,就一成不变了。拉德利哀(J.Ladriere)曾提出一个巧妙的解释,他认为“我们不能一下子就把思维可能有的各种运算一览无余”。这是第一个正确的估计。但是,一方面,我们思维可能有的运算数目不是一下子就能确定的,而是有可能逐渐增加的;另一方面,我们的浏览能力随着智力的发展而变化很大,所以,我们可以希望浏览能力的扩大。反之,如果我们考虑到第7节开头所提到的形式与内容的相对性,干脆他说就是由于这样的事实:不存在只有形式自身的形式,也不存在只有内容自身的内容,每个(从感知一运动性动作到运算,或从运算到理论等等的)成分都同时起到对于被它所统属的内容而言是形式,而对于比它高一级的形式而言又是内容的作用。初等算术是一个形式,这是毫无疑问的;但是,初等算术在超穷算术中成了一个内容(作为“可数的幂”)。结果是,在每一个层次上,一定内容的可能的形式化,仍然是受到这个内容的性质所限制的。相对于各种具体的动作来说,“自然逻辑”虽然是一个形式,但“自然逻辑”的形式化并不能推得很远;直觉数学的形式化能推得远得多,虽则对这些直觉数学要加以修正,才能对直觉数学作形式化的处理;依次类推。
然而,如果说在人的行为的各个阶段,直到简单到感觉-运动图式,以及这些图式的特殊情况知觉图式等,都能找到一些形式,那末是否可以从中得出结论说,一切都是“结构”,并且就此结束我们的陈述呢?在一个意义上也许可以说是的,但是只有在这个意义上,就是说一切都是可以有结构的。可是,结构作为种种转换规律组成的自身调整体系,是不能跟随便什么形式混为一谈的:我们说一堆石子也有一个形式(因为依照“格式塔”学派的理论,存在着“好”形式,也有“坏”形式:参看第11节),但是,只有当我们给这堆石子作出一个精致的理论,把它整个“潜在”运动的体系考虑在内,这堆石子才成其为一个“结构”。这个问题,就把我们引到物理学上来了。
但是,关于逻辑结构的思考,对一般结构主义来说,还有另外一个好处:就是指明在哪些方面“结构”不能跟它们的形式化混为一谈?并且指明,在什么上面,从一种我们将要努力逐步加以说明的意义上说,结构是从。“自然的”现实中产生的。
这些阐述第一个值得注意之点是,在诸结构是可以互相比较的某个特定的领域内引进了结构相对强弱的概念。这样,引进的等级关系马上就暗示了一个构造论观念,就象生物学里不同特性的等级关系曾经暗示过演化论观念一样:一个弱结构使用较初级的方法去论证,而设计越复杂的工具则和愈来愈强的结构相对应,这样看似乎是合理的。
然而,这个构造论观念并不是随便想出来的。哥德尔这些发现的第二个基本教训,的确就是非常直接地迫使大家要接受构造论观念,因为要在论证其不矛盾性方面完成一个理论,只分析这个理论的先验的假设是不够的,而必须去建造下一个理论!直到那时候,人们原可以把各种理论看作是组成了一座美丽的金字塔,建立在自给自足的基础之上,最下面的一层是最坚固的,因为它是用最简单的工具组成的。但是,如果简单性成了弱的标志,如果为了加固一层就必须建造下面一层,那金字塔的坚固性实际上是悬挂在它的顶上;而金字塔的这个顶端本身也没有完成,而要不断往上增高:于是金字塔的形象要求颠倒过来了,更确切他说,是被一个越往上升越来越大的螺旋塔的形象所代替了。