历代文学网 历代文学
收录来自古今中外 20 多个朝代,近 60个 国家的作者超 3万 人,诗词曲赋、文言文等作品数近 60万 个,名句超 10万 条,著作超 2万 部。

数学女孩 作者:结城浩 近现代)

章节目录树

8.7 两个世界、四种运算

上一章 下一章

下降阶乘幂的定义(n为正整数)

章节插图
章节插图

如果使用调和数Hn这个表示方法的话,我们可以得到以下式子。

解答 8-3

章节插图

将“微分后得章节插图”这一性质考虑成对数函数满足的微分方程式看看。因为章节插图还可以写成章节插图的形式,所以我们也可以说“微分后得章节插图”。米尔嘉过去将微分的运算符号用 d 来表示,我现在也这么用,那么就可以得到以下式子。

对数函数和调和数的关系

章节插图
章节插图

下降阶乘幂的定义(n为整数)

章节插图

好了,我们再回到对数函数上,目标是解出以下这个差分方程式。

n= 4, 3, 2, 1 的时候,章节插图分别如下。

稍微等一下。在说“微分和差分”的时候,米尔嘉最后提到了“积分与和分”。“连续函数的世界”与“离散函数的世界”是两个世界。微分、差分、积分、和分是四种运算……好吧,我用图示来整理一下。

仔细观察以上式子,我们可以得到以下结论。

章节插图L(x) 的差分方程式

L(x) 的差分方程式和调和数Hn的推导公式相同!如果是这样的话,我们将L(1) 定义为 1。这样一来,就可以得到以下非常简单的关系式了。

从这里开始推,与章节插图相对应的离散函数世界中的函数L(x) 就可以考虑成是满足如下差分方程式的式子。一般来说,可以使用下降阶乘幂章节插图次方来代替 -1 次方。

问题是在离散函数的世界里寻找与对数函数章节插图相对应的函数。

再来看右边,根据章节插图的定义,可以得到章节插图。所以差分方程式就可以变为以下形式。

章节插图函数L(x) 满足的差分方程式

接下来如果能求出L(x) 就好了。咦?怎么回事呀?

章节插图和我之前和泰朵拉说过的式子不是正好一样吗?嗯,就是这个式子。

章节插图x为正整数

换句话说,我们可以得到以下结论。

对数函数和调和数的关系

章节插图

“你的弱点是不肯画图。”

章节插图调和数Hn的推导公式

所以,我们可以得到以下对应关系。

但是,不知道怎么的一下子就是想出不来啊。对数函数原来和调和数是如此紧密地联系在一起的啊!

连续函数世界中的积分用 dt来表示是可以的吧。那么,离散函数世界中的积分就有必要表示成δk吧。啊,假设δk为 1 的话,就可以前后相呼应了。

嗯,很完美地总结了出来。数学公式真是让人神清气爽啊!

但是,过去和米尔嘉讨论的时候,我们只考虑了在n大于 0 的范围内的下降阶乘幂章节插图,如下所示。

求对数函数章节插图的微分的方法我在书上看到过。

晚上。

首先来看左边,根据 △ 的定义,可以得到章节插图

也就是说,必须考虑当n小于等于 0 的时候将章节插图定义成什么比较妥当。

章节插图对数函数满足的微分方程式

呜呜,被米尔嘉这样直白地指出自己的弱点,真是难过啊!比被人踩了一脚还疼。

这次也从与对数函数章节插图相对应的微分方程式开始做起吧。

两个世界、四种运算

章节插图

以前,在寻找指数函数的时候,是利用章节插图章节插图相对应的关系把问题解决的。微分方程式和差分方程式是相对应的。

章节插图

我在自己的房间打开笔记本,开始思考米尔嘉给我布置的问题。

嗯,我归纳得很不错啊。在这个图中,我可以将“调和数”写在右下方的“和分章节插图”的位置。也就是说,当它回到连续函数的世界中时……啊,对了!章节插图进行微分后可得章节插图的话,也就是说将章节插图积分后就可以得到章节插图了。因为写成了章节插图,所以我一下子没想出来。如果写成章节插图的话就好了。

如果继续延伸下去,我们还可以得到以下结论。

章节插图

好吧,就照米尔嘉所说的,我来画图看看。我把表示积分与和分的面积的图都画出来就可以了吧。

到此为止,我们可以解出问题 8-3 了。

章节插图

啊,“连续函数的世界”与“离散函数的世界”之间的对应关系从图像上看果然是一目了然。真是让我大吃一惊啊!

这样一来就可以接受了。

章节插图
上一章 下一章