光波位于这两者中间的某个位置上,其波长在0.0000004米到0.0000007米之间。蓝紫光的波长最短,红光最长,绿光、黄光和橙光则介于其间。(这就解释了为什么彩虹的颜色排列总是朝着同一个方向——从蓝紫色这样的短波长颜色直到红色这样的长波长颜色。)这些就是我们能“看到”的电磁波,原因在于我们的眼中有叫作光受体的特殊蛋白质,它们可以接受和吸收这些光的能量,就像天线吸收无线电波一样。
b.第二株切掉了茎尖。
当然,植物并不能像你我那样“看到”画面。植物不能区别一位轻微谢顶的中年男子和一位留着棕色卷发的微笑的小女孩。但是,它们的确能够通过多种办法看到光,还能看到一些我们只能在脑子里想象的颜色。植物能看到灼伤我们皮肤的紫外线,看到让我们感到暖和的红外线。植物可以察觉什么时候光线暗如烛火,什么时候是正午,什么时候太阳将要落山。植物知道光线是来自左面、右面还是上面。它们知道是否有另一棵植物长过了它们的头顶,遮住了本应照在自己身上的光。它们还知道周围的灯光究竟亮了多久。
c.第三株用一个不透光的小帽罩住茎尖。
在一个非常简单的实验中,达尔文父子揭示了植物的向光弯曲与光合作用(这是植物把光转变为能量的过程)无关,实际上是由植物向光运动的内在能力所引发。在实验中,达尔文父子让一盆加那利虉草在一间完全黑暗的屋子里生长了几天。然后,他们在离花盆12英尺的地方点燃一盏很小的煤气灯,灯光很昏暗,使他们“无法看见幼苗,也无法看到铅笔在纸上画的线”。然而,只过了3小时,虉草就明显地向这昏暗的灯光弯过去了。弯曲总是发生在幼苗的同一部位——茎尖以下大约1英寸的地方。
这一过程包含很多阶段,任一阶段发生问题,都可以引发视觉缺陷——有时是因为视网膜结构上出现了物理问题;有时是不能对光产生感知(比如说视紫红质或光视蛋白出了问题);有时是不能把信息传达给脑。以红色色盲为例,具有这种视觉缺陷的人没有感红视锥细胞,因此他们的眼睛完全不能吸收红色信号,也就无法把它传达给脑。人类视觉牵涉到吸收光的细胞和处理光信息的脑,脑在处理完信息之后,我们就可以对这些信息做出反应。那么,植物又如何呢?
她的根紧紧束缚着她,但她总是向着太阳转动;她的外形已经改变,爱却永不改变。
达尔文和他的儿子弗朗西斯都对植物生长中光产生的效应十分着迷。在他最后一本著作《植物的运动力》中,达尔文写道:“几乎没有什么(植物),其某一部位……是不会向着侧面光弯曲的。”这话用不那么啰唆的现代语文来说就是:几乎所有植物都向着光弯曲。我们随时能看到室内植物冲着从窗户射进来的阳光垂头弯身。植物的这一行为就叫做向光性。1864年,和达尔文同时代的一位叫尤利乌斯·冯·萨克斯的科学家发现,蓝光是诱发植物向光性的主要颜色,而且植物对其他颜色的光一般都视而不见,它们对植物的向光弯曲几乎不起作用。不过,当时没有人知道植物是如何、靠哪个部位看到来自某一方向的光的。
韦氏词典最权威的英语词典之一。——译者注">对“视觉”的定义是“眼睛接受光刺激之后,脑对光刺激进行解释,将其构建为由空间中物体的位置、形状、亮度和通常同时具备的颜色构成的图像的生理感觉”。我们看到的光,是术语称之为“可见光谱”的东西。光实际上是电磁波光谱的可见区段的同义词,是我们日常使用、易于理解的词语。这意味着光和所有其他类型的电磁信号——比如微波和无线电波——共有一些性质。调幅广播所用的无线电波,其波长非常长,几乎有半英里。这就是为什么广播天线要有几层楼高的缘故。与此相反,X射线的波长却极其短,是无线电波的一万亿分之一,所以它能如此轻而易举地穿透人体。
a.第一株幼苗没作任何处理,其行为表明实验条件可引发向光性。
在这个实验中,幼苗的生长环境与前一个实验相同。未处理的幼苗理所当然向光弯曲。同样,中间部分套着不透光管子的幼苗(见上面的e)也向光弯曲。然而,如果除去幼苗的茎尖,或者用不透光的小帽罩住它,幼苗就失明了,无法向光弯曲。然后,他们又见证了上述场景(d)中植物的行为——幼苗仍然向光弯曲,好像它的茎尖上根本没有小帽一样。不同之处在于,这里的小帽是透明的。达尔文父子认识到玻璃可以透过光,让光照在幼苗的茎尖上。于是,通过这个在1880年发表了结果的简单实验,他们确证向光性是照射到植物苗梢的结果。苗梢看到光,把信息传递给植物的中段,叫它向着光的方向弯曲。达尔文父子便这样成功地展示了植物的原始视觉。
那么,这些能被看成“植物视力”吗?首先我们要搞清楚人类的视力是什么。假设有一个人生来就失明,生活在完全的黑暗之中。现在,假定这个人有了区别光亮和阴暗的能力,于是他可以区分夜晚与白天,室内与室外。这些新的感觉可以看作初等的视觉,可以使这个人拥有新型的能力。现在,再假定这个人可以区分颜色,他能看到天上是蓝色,地下是绿色。显然,比起完全的黑暗,或仅仅有明暗感来,这又是一个可喜的进步。我想我们都会同意,对这个人来说,从完全的黑暗到能够看到颜色是一个根本性转变,她因此有了“视力”。
e.第五株用一个不透光的管子遮住其中间部分。
d.第四株用一个透明玻璃小帽罩住茎尖。
达尔文向光性实验示意
眼球后方有一层膜叫作视网膜,上面覆盖着成列成列的光感受器,好比平板电视里成列成列的发光二极管(LED),或是数码相机里成列成列的传感器。视网膜上的每一处都含有对所有光敏感的视杆细胞和对不同颜色的光敏感的视锥细胞。每个视锥细胞或视杆细胞都能对聚焦于其上的光产生反应。人类视网膜含有大约1.25亿个视锥细胞和600万个视杆细胞,它们集中分布在相当于护照照片大小的面积里。这相当于一部分辨率为130百万像素的数码相机。在如此小的面积中分布有如此巨大数量的感受器,这使我们具有很高的视觉分辨率。作为比较,分辨率最高的户外LED显示屏每平方米只有大约1万个LED,普通的数码相机也只有大约800万像素的分辨率。
你是否想过,植物能看到你?
这让达尔文父子提出疑问:虉草的什么部位看到了光?他们做了一个现在已经成为植物学经典的实验:他们假设虉草的“眼睛”长在幼苗茎尖,而不是幼苗弯曲的地方。他们检验了5株不同的幼苗的向光性,如下图所示:
实际上,植物无时无刻不在监视着它周围可以看到的环境。植物知道你是否走近,知道你什么时候位于它们上面。植物还知道你穿的衬衫是蓝的还是红的,知道你是否给房子上过色,知道你是否曾把它栖息的花盆从客厅的一端搬到另一端。
——奥维德《变形记》
并不广为人知的是,自从出版了《物种起源》这部里程碑式巨著之后,查尔斯·达尔文用了20年时间做了一系列至今还在影响植物研究的实验。
视杆细胞对光更为敏感,可以让我们在夜间和低光照条件下视物,但看不到颜色。而因为不同的视锥细胞分别对红、绿和蓝三种光敏感,它们可以让我们在亮光下看到各种颜色。这两种不同的光感受器的主要区别在于所含的特殊化学物质不同。视杆细胞中含有视紫红质,视锥细胞中则含有光视蛋白,这些化学物质都具有特殊的分子结构,使之能够吸收不同波长的光。蓝光可为视紫红质和感蓝光视蛋白所吸收;红光可为视紫红质和感红光视蛋白所吸收。紫红色光可为视紫红质、感蓝光视蛋白和感红光视蛋白所吸收,但不能为感绿光视蛋白所吸收,其余类推。一旦视杆细胞或视锥细胞吸收了光,它就向脑发送信号。脑再把来自上亿的光感受器的信号处理成单一连贯的画面。